## Carbon-13 Nuclear Magnetic Resonance Spectra of (Z)- and (E)-Aurones

By Andrew Pelter and Robert S. Ward,\* Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP

Harry G. Heller, Edward Davies Chemical Laboratory, University College of Wales, Aberystwyth SY23 1NE

The  $^{13}$ C n.m.r. spectra of a series of (Z)- and (E)-aurones have been determined. The differences between the spectra of the (Z) - and (E) -isomers afford a useful method for distinguishing between the two series.

As a continuation of our investigations of the  ${}^{13}$ C n.m.r. there are reproducible differences between the spectra of spectra of flavonoids and related compounds,  ${}^{1,2}$  we have the Z- and E-isomers. The largest differences are studied the spectra of a series of aurones (1)—(18). The observed for the exocyclic olefinic carbon atom (=CH) but

## TABLE 1

<sup>13</sup>C Chemical shifts of aurones

| Com-                                                                                                                                                                                                                                                         |        |        |        |        |        |        |                |          |        |        |        |            |        |        |        |       |       | OMe,   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------------|----------|--------|--------|--------|------------|--------|--------|--------|-------|-------|--------|
| pound                                                                                                                                                                                                                                                        | C-1′   | C-2'   | C-3′   | C-4′   | C-5′   | C-6'   | =CH            | C-2      | C-3    | C-4    | C-5    | C-6        | C-7    | C-7a   | C-3a   | C-1   | ſе    | OAc    |
| (1)                                                                                                                                                                                                                                                          | 132.25 | 131.47 | 128.82 | 129.81 | 128.82 | 131.47 | 112.88         | 146.80   | 184.57 | 124.55 | 123.39 | 136.78     | 112.88 | 166.03 | 121.57 |       |       |        |
| (2) a                                                                                                                                                                                                                                                        | 137.75 | 131.13 | 122.92 | 147.15 | 122.92 | 131.13 | 108.16         | 146.97   | 182.71 | 123.62 | 123.53 | 137.13     | 112.38 | 165.05 | 119.85 |       |       |        |
| (3)                                                                                                                                                                                                                                                          | 124.99 | 133.35 | 114.43 | 161.01 | 114.43 | 133.35 | 112.79         | 145.81   | 184.31 | 124.41 | 123.18 | 136.43     | 113.26 | 165.73 | 121.89 |       |       | 55,28  |
| (4)                                                                                                                                                                                                                                                          | 132.42 | 131.47 | 128.84 | 129.72 | 128.84 | 131.47 | <b>112.5</b> 0 | 147.29   | 184.79 | 124.23 | 133.16 | 137.95     | 112.50 | 164.62 | 121.54 | 20.73 |       |        |
| (4a)                                                                                                                                                                                                                                                         | 131.98 | 130.87 | 128.45 | 130.20 | 128.45 | 130.87 | 122.23         | 148.53   | 182.82 | 124.16 | 132.45 | 138.00     | 112.16 | 163.80 | 123.31 | 20.78 |       |        |
| e                                                                                                                                                                                                                                                            | -0.44  | -0.60  | -0.39  | +0.48  | -0.39  | -0.60  | +9.73          | +1.24    | -1.97  | -0.07  | -0.71  | +0.05      | -0.34  | -0.82  | +1.77  | +0.05 |       |        |
| (5)                                                                                                                                                                                                                                                          | 132.63 | 131.23 | 128.77 | 129.37 | 128.77 | 131.23 | 111.27         | 147.46   | 184.83 | 139.52 | 126.15 | 148.22     | 110.16 | 166.89 | 117.45 | 17.69 | 22.41 |        |
| (6)                                                                                                                                                                                                                                                          | 125.39 | 133.06 | 114.39 | 160.70 | 114.39 | 133.06 | 111.64 4       | 4 146.49 | 184.78 | 139.41 | 125.98 | 147.82     | 110.14 | 166.69 | 117.76 | 17.72 | 22.42 | 55.31  |
| (6a)                                                                                                                                                                                                                                                         | 125.02 | 132.83 | 113.81 | 161.14 | 113.81 | 132.83 | 121.55         | 147.55   | 183.02 | 139.46 | 125.39 | 147.82     | 109.76 | 165.99 | 119.35 | 17.72 | 22.42 | 55.31  |
| e                                                                                                                                                                                                                                                            | -0.37  | -0.23  | -0.58  | +0.44  | -0.58  | -0.23  | +9.91          | +1.06    | -1.76  | +0.05  | -0.59  | 0.00       | -0.38  | -0.70  | +1.59  | 0.00  | 0.00  | 0.00   |
| (7)                                                                                                                                                                                                                                                          | 132.70 | 131.32 | 128.82 | 129.46 | 128.82 | 131.32 | 111.56 4       | 147.08   | 185.88 | 137.07 | 124.59 | 137.13     | 119.51 | 164.86 | 119.11 | 17.43 | 13.90 |        |
| (7a)                                                                                                                                                                                                                                                         | 132.06 | 130,73 | 128.32 | 129.92 | 128.32 | 130.73 | 121.31         | 148.18   | 184.09 | 137.07 | 123.88 | 137.13     | 119.38 | 164.22 | 120.68 | 17.43 | 13.73 |        |
| e                                                                                                                                                                                                                                                            | -0.64  | -0.59  | -0.50  | +0.46  | -0.50  | -0.59  | +9.75          | +1.10    | -1.79  | 0.00   | -0.71  | 0.00       | -0.13  | -0.64  | +1.57  | 0.00  | -0.17 |        |
| (8)                                                                                                                                                                                                                                                          | 131.85 | 132.58 | 132.18 | 123.84 | 132.18 | 132.58 | 110.05         | 147.50   | 185.50 | 137.33 | 124.90 | 137.33     | 119.59 | 165.01 | 119.26 | 17.37 | 13.85 |        |
| (8a)                                                                                                                                                                                                                                                         | 131.00 | 132.17 | 131.56 | 124.21 | 131.56 | 132.17 | 119.88 4       | 148.50   | 184.23 | 137.25 | 124.10 | 137.30     | 119.44 | 164.30 | 120.60 | 17.46 | 13.72 |        |
| e                                                                                                                                                                                                                                                            | -0.85  | -0.41  | -0.62  | +0.37  | -0.62  | -0.41  | +9.83          | +1.00    | -1.27  | -0.08  | -0.80  | -0.03      | -0.15  | -0.71  | +1.34  | +0.09 | -0.13 |        |
| (9)                                                                                                                                                                                                                                                          | 131.22 | 132.36 | 129.12 | 135.36 | 129.12 | 132.36 | 110.06         | 147.22   | 185.68 | 137.12 | 124.83 | 137.38     | 119.54 | 164.84 | 119.00 | 17.42 | 13.91 |        |
| (10)                                                                                                                                                                                                                                                         | 139.22 | 131.56 | 124.04 | 147.51 | 124.04 | 131.56 | 108.10         | 148.68   | 185.67 | 137.69 | 125.38 | 137.99     | 119.71 | 165.13 | 118.81 | 17.50 | 13.94 |        |
| (11)                                                                                                                                                                                                                                                         | 125.34 | 132.99 | 114.27 | 160.59 | 114.27 | 132.99 | 111.65         | 145.94   | 185.34 | 136.58 | 124.26 | 136.58     | 119.30 | 164.41 | 119.19 | 17.29 | 13.81 | 55.14  |
| (11a)                                                                                                                                                                                                                                                        | 125.07 | 132.82 | 113.69 | 161.10 | 113.69 | 132.82 | 121.75         | 147.04   | 183.58 | 136.58 | 123.53 | 136.58     | 119.19 | 163.76 | 120.79 | 17.29 | 13.66 | 55.14  |
| e                                                                                                                                                                                                                                                            | -0.27  | -0.17  | -0.58  | +0.51  | -0.58  | -0.17  | +10.10         | +1.10    | -1.76  | 0.00   | -0.73  | 0.00       | -0.11  | -0.65  | +1.60  | 0.00  | -0.15 | 0.00   |
| (12)                                                                                                                                                                                                                                                         | 132.86 | 131.16 | 128.73 | 129.19 | 128.73 | 131.16 | 110.73         | 146.46   | 185.35 | 136.09 | 126.57 | 147.62     | 117.75 | 165.02 | 117.09 | 17.28 | 20.02 |        |
|                                                                                                                                                                                                                                                              |        |        |        |        |        |        |                |          |        |        |        |            |        |        |        | 10.   | 50    |        |
| (13)                                                                                                                                                                                                                                                         | 132.29 | 131.13 | 128.66 | 129.40 | 128.66 | 131.13 | 111.63         | 147.65   | 182.67 | 125.59 | 112.00 | 167.22     | 96.54  | 168.33 | 114.69 |       |       | 55.91  |
| (14) b                                                                                                                                                                                                                                                       | 123.41 | 133.23 | 116.14 | 159.30 | 116.14 | 133.23 | 111.93         | 146.06   | 182.49 | 125.25 | 112.78 | 166.97     | 96.46  | 167.82 | 114.88 |       |       | 55.92  |
| (15)                                                                                                                                                                                                                                                         | 130.17 | 132,48 | 122.09 | 151.49 | 122.09 | 132.48 | 110.85         | 147.77   | 182.90 | 125.86 | 112.28 | 167.55     | 96.69  | 168,57 | 114.80 |       |       | 56.04  |
|                                                                                                                                                                                                                                                              |        |        |        |        |        |        |                |          |        |        |        |            |        |        |        |       |       | 21.16  |
|                                                                                                                                                                                                                                                              |        |        |        |        |        |        |                |          |        |        |        |            |        |        |        |       |       | 169.08 |
| (16) c                                                                                                                                                                                                                                                       | 119.02 | 157.15 | 115.60 | 131.13 | 119.30 | 130.93 | 105.90         | 146.81   | 181.77 | 124.99 | 111.96 | 166.87     | 96.56  | 167.71 | 114.41 |       |       | 55.97  |
| (17)                                                                                                                                                                                                                                                         | 125.00 | 149.73 | 122.66 | 130.24 | 126.05 | 131.49 | 103.99         | 148.40   | 182.44 | 125.75 | 112.12 | 167.36     | 96.58  | 168.38 | 114.56 |       |       | 55.96  |
|                                                                                                                                                                                                                                                              |        |        |        |        |        |        |                |          |        |        |        |            |        |        |        |       |       | 21.02  |
| (10)                                                                                                                                                                                                                                                         |        | 100.01 |        | 1      |        | 100.01 | 107 00         | 1 40 10  | 100.40 | 101.00 | 110.00 | 100 00     |        | 105 00 | 115 00 | 1.0.0 |       | 168.96 |
| (18) e                                                                                                                                                                                                                                                       | 128.48 | 130.21 | 114,64 | 157.72 | 114.64 | 130.21 | 127.89         | 143.12   | 182.43 | 124.28 | 110.98 | 165.79     | 95.07  | 165.99 | 115.63 | 14.24 |       | 99.I   |
| All spectra run in CDCl, except where indicated: 4 (CD <sub>2</sub> ) <sub>8</sub> SO, b CDCl <sub>2</sub> -(CD <sub>2</sub> ) <sub>8</sub> SO (4 : 1), c CDCl <sub>2</sub> -(CD <sub>2</sub> ) <sub>8</sub> SO (2 : 1), d Confirmed by specific decoupling. |        |        |        |        |        |        |                |          |        |        | ng. D  | ifferences |        |        |        |       |       |        |

All spectra run in  $CDCl_3$  except where indicated: a  $(CD_3)_2SO$ . b  $CDCl_3-(CD_3)_2SO$  (4:1). c  $CDCl_3-(CD_3)_2SO$  (2:1). d Confirmed by specific decoupling, between Z- and E-isomers.

signals (Table 1) were assigned on the basis of their multiplicity in the off-resonance spectra and by consideration of the known substituent effect of the groups concerned.<sup>3,4</sup> In some cases the assignments were also carbon atoms 2, 3, and 3a also show significant differences (>1 p.p.m.) between the two isomers (Table 1 and Figure). These differences, particularly in the chemical shift of the olefinic =CH, afford a useful method

|              |       |       |              | TABLI        | 5 <u>4</u>   |             |       |       |       |
|--------------|-------|-------|--------------|--------------|--------------|-------------|-------|-------|-------|
|              |       |       | Chemical shi | ifts of C-me | thyl groups  | s of ring A |       |       |       |
|              |       |       |              |              | Compound     |             |       |       |       |
|              | (4)   | (5)   | (6)          | (7)          | (8)          | (9)         | (10)  | (11)  | (12)  |
| 4-Me         |       | 17.69 | 17.72 *      | 17.43 *      | 17.37        | 17.26       | 17.50 | 17.29 | 17.28 |
| 5-Me<br>6-Me | 20.73 | 22.41 | 22.42 *      |              |              |             |       |       | 20.02 |
| 7-Me         |       |       |              | 13.90 *      | 13.85        | 13.80       | 13.94 | 13.81 | 10.50 |
|              |       |       | * Confi      | rmed by spe  | cific decoup | ling.       |       |       |       |

T .--- 0

confirmed by specific irradiation at the frequencies of signals in <sup>1</sup>H n.m.r. spectra.

Several features of the spectra are worthy of comment. First, in all cases, except the  $\beta$ -methyl compound (18), the signals due to C-2 and -3 lie within closely defined limits. Thus the carbonyl carbon atom (C-3) absorbs between 181.8 and 185.9 p.p.m. in all the compounds, while the signal for C-2 comes between 145.8 and 148.7 p.p.m. The latter signal appears at 143.1 p.p.m. in the spectrum of the  $\beta$ -methylaurone (18). Secondly,

for distinguishing between the two series and represent a considerable improvement over previous methods for assigning the stereochemistry of aurone isomers.<sup>5</sup> The <sup>1</sup>H n.m.r. spectra, for example, are completely unsatisfactory for this purpose because the olefinic protons have similar chemical shifts in both isomers.

The spectra of compounds (4)--(12) show that the signals due to the C-Me groups attached to ring A are characteristic of their position (Table 2).

Finally, the substituent effects of groups attached to

ring B are in good agreement with those reported for other benzene derivatives.<sup>2-4</sup> However, introducing a

separately at C-6 and C-7 (predicted shifts -0.1 and -2.9).



methyl group at C-4 of ring A causes a much greater downfield shift of the C-4 signal itself than would be



Mean differences in chemical shift between Z- and E-isomers

predicted simply on the basis of substituent effects. Thus shifts of +15.0 and +12.9 p.p.m. occur on introducing methyl groups at the 4,6- and 4,7-positions (predicted shifts +8.8 and +6.0), and shifts of -1.0 and -3.4 p.p.m. occur on introducing methyl groups EXPERIMENTAL

The <sup>13</sup>C spectra were determined using a Varian XL-100 instrument coupled to a 620L-100 computer. Chemical shifts are recorded as p.p.m. downfield from internal tetramethylsilane [solvent CDCl<sub>3</sub> or CDCl<sub>3</sub>-(CD<sub>3</sub>)<sub>2</sub>SO]. The aurones were prepared by known methods.<sup>6</sup>

[8/036 Received, 10th January, 1978]

REFERENCES

<sup>1</sup> A. Pelter, R. S. Ward, and T. I. Gray, J.C.S. Perkin I, 1976, 2475.

<sup>2</sup> A. Pelter, R. S. Ward, and R. J. Bass, J.C.S. Perkin I, 1978, 666.

<sup>3</sup> G. C. Levy and G. L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemists,' Wiley-Interscience, New York, 1972.

<sup>4</sup> J. B. Stothers, 'Carbon-13 N.M.R. Spectroscopy,' Academic Press, New York, 1972.

<sup>5</sup> J. S. Hastings and H. G. Heller, *J.C.S. Perkin I*, 1972, 2128; see also T. J. King, J. S. Hastings, and H. G. Heller, *ibid.*, 1975, 1455.